Diachronic Embedding for Temporal Knowledge Graph Completion
نویسندگان
چکیده
منابع مشابه
ProjE: Embedding Projection for Knowledge Graph Completion
With the large volume of new information created every day, determining the validity of information in a knowledge graph and filling in its missing parts are crucial tasks for many researchers and practitioners. To address this challenge, a number of knowledge graph completion methods have been developed using low-dimensional graph embeddings. Although researchers continue to improve these mode...
متن کاملProbabilistic Belief Embedding for Knowledge Base Completion
This paper contributes a novel embedding model which measures the probability of each candidate belief 〈h, r, t,m〉 in a large-scale knowledge repository via simultaneously learning distributed representations for entities (h and t), relations (r), and even the words in relation mentions (m). It facilitates knowledge completion by means of simple vector operations to discover new beliefs. Given ...
متن کاملAttentive Path Combination for Knowledge Graph Completion
Knowledge graphs (KGs) are often significantly incomplete, necessitating a demand for KG completion. Path-based relation inference is one of the most important approaches to this task. Traditional methods treat each path between entity pairs as an atomic feature, thus inducing sparsity. Recently, neural network models solve this problem by decomposing a path as the sequence of relations in the ...
متن کاملOpen-World Knowledge Graph Completion
Knowledge Graphs (KGs) have been applied to many tasks including Web search, link prediction, recommendation, natural language processing, and entity linking. However, most KGs are far from complete and are growing at a rapid pace. To address these problems, Knowledge Graph Completion (KGC) has been proposed to improve KGs by filling in its missing connections. Unlike existing methods which hol...
متن کاملSemantically Smooth Knowledge Graph Embedding
This paper considers the problem of embedding Knowledge Graphs (KGs) consisting of entities and relations into lowdimensional vector spaces. Most of the existing methods perform this task based solely on observed facts. The only requirement is that the learned embeddings should be compatible within each individual fact. In this paper, aiming at further discovering the intrinsic geometric struct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2020
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v34i04.5815